
Interaction between inter-repetition dependences and high-level
transformations in Array-OL

Calin Glitia and Pierre Boulet,
Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille

INRIA Lille - Nord Europe
59655 Villeneuve d’Ascq Cedex, FRANCE

Abstract

Systematic signal processing applications ap-
pear in many application domains such as video
processing or detection systems. These applications
handle multidimensional data structures (mainly
arrays) to deal with the various dimensions of the
data (space, time, frequency). The Array-OL spec-
ification language is designed to allow the direct
manipulation of these different dimensions with a
high level of abstraction. An extension of Array-
OL was previously introduced in order to allow the
modeling of uniform inter-repetition dependences.
This article studies the interaction between these
dependences and the high-level transformations
designed to allow to adapt the application to the
execution, already available on Array-OL.

1 Introduction

Computation intensive multidimensional appli-
cations are predominant in several application do-
mains such as image and video processing or detec-
tion systems (radar, sonar).

The Array-OL (Array Oriented Language) spec-
ification language is designed to provide ways to
specify multidimensional data accesses without
compromising the usability of the language and if
possible provide a way to statically schedule these
applications on parallel hardware platforms. Some
features that a good language for multidimensional
intensive signal processing ought to possess are a
way to access the multidimensional data structures
via sub-arrays, the support of sliding windows, the
possibility to deal with cyclic data accesses, the
possibility to deal with several sampling rates in

the same specification and some way to stateful
computations such as recursive filters.

A complete formal specification of Array-OL is
available in [2] and a comparison with several lan-
guages (or models of computation) dedicated to sig-
nal processing is available in [7]. Most of the com-
pared languages are based on SDF (Synchronous
Data Flow) [9] or on its multidimensional exten-
sion, MDSDF (Multi-dimensional Synchronous
Data Flow) [10], like GMDSDF [10] or WSDF [8],
which are the languages that share most common
elements with Array-OL. A detailed comparison of
MDSDF, GMDSDF and Array-OL (without delays)
is available in [5].

Array-OL was able to deal with all the features
mentioned earlier, with the exception of state struc-
tures. A recent extension in Array-OL was pro-
posed in [7] to cope with expressing state structures,
the inter-repetition dependence extension. Such de-
pendence consists of a self-loop on a repetition task
that expresses uniform dependences between the
repetitions on that task. The Array-OL language
expresses the minimal order of execution that leads
to the correct computation. This is a design inten-
sion and lots of decisions can and have to be taken
when mapping an Array-OL specification onto an
execution platform. A set of Array-OL code trans-
formations is available [4, 12], designed to allow
to adapt the application to the execution, allow-
ing to choose the granularity of the flows and a
simple expression of the mapping by tagging each
repetition by its execution mode: data-parallel or
sequential. These transformations act on manipulat-
ing the hierarchical structure of an application and
by distributing repetitions through this hierarchy,
guaranteeing that the semantics of the application
remain unchanged. With the extension of the lan-
guage, these transformations should guarantee in

1



addition that the uniform dependences ramain also
unchanged.

Our interest in this paper is exclusively the inter-
action between these dependences and the Array-
OL transformations. It is essential in order to pre-
serve the techniques of passing to an execution
model for Array-OL models with dependences. We
identifying the rules that express the relations be-
tween the transformations and the inter-repetition
dependences. Based on these rules, we propose an
algorithm for transforming the inter-repetition de-
pendences parallel to the available Array-OL trans-
formation engine.

We recall the bases of Array-OL in section 2,
followed the presentation of the extension in sec-
tion 3 and by a short presentation of the Array-OL
transformations in section 4. A formal analysis
of the interaction and based on this the algorithm
allowing the transformation of the inter-repetition
dependences is presented in section 5.

2 Array-OL - principles

The initial goal of Array-OL is to give a mixed
graphical-textual language to express multidimen-
sional intensive signal processing applications. The
complex access patterns lead to difficulties to sched-
ule these applications efficiently on parallel and dis-
tributed execution platforms. As these applications
handle huge amounts of data under tight real-time
constraints, the efficient use of the potential par-
allelism of the application on parallel hardware is
mandatory.

From these requirements, we can state the basic
principles that underly the language:

• All the potential parallelism in the application
has to be available in the specification.

• Array-OL is a data dependence expression
language.

• It is a single assignment formalism.

• Data accesses are done through uniform sub-
arrays, called patterns.

• The language is hierarchical to allow descrip-
tions at different granularity levels and to han-
dle the complexity of the applications.

• The spatial and temporal dimensions are
treated equally in the arrays.

• The arrays are seen as tori. Indeed, some spa-
tial dimensions may represent some physical
tori, like hydrophones around a submarine.

The semantics of Array-OL is that of a first or-
der functional language manipulating multidimen-
sional arrays. It is not a data flow language but
can be projected on such a language.

Formally, an Array-OL application is a set of
tasks connected through ports. The tasks are equiv-
alent to mathematical functions reading data on
their input ports and writing data on their output
ports. The tasks are of three kinds: elementary,
compound and repetition. An elementary task is
atomic (a black box), it can come from a library
for example. A compound is a dependence graph
whose nodes are tasks connected via their ports. A
repetition is a task expressing how a single sub-task
is repeated.

All the data exchanged between the tasks are
arrays. These arrays are multidimensional and are
characterized by their shape, the number of ele-
ments on each of their dimension. As said above,
the Array-OL model is single assignment. One ma-
nipulates values and not variables. Time is thus
represented as one (or several) dimension of the
data arrays.

Data parallelism A data-parallel repetition of a
task is specified in a repetition task. The basic hy-
pothesis is that all the repetitions of this repeated
task are independent. The second one is that each
instance of the repeated task operates with sub-
arrays of the inputs and outputs of the repetition.
For a given input or output, all the sub-array in-
stances have the same shape, are composed of reg-
ularly spaced elements and are regularly placed in
the array.

In order to give all the information needed to
create these patterns, a tiler is associated to each
array (ie each edge). A tiler is able to build the
patterns from an input array, or to store the patterns
in an output array. It describes the coordinates of
the elements of the tiles from the coordinates of the
elements of the patterns. It contains:

• F : a fitting matrix whose column vectors rep-
resent the regular spacing between the ele-
ments of a pattern in the array.

• o: the origin of the reference pattern (for the
reference repetition).

• P : a paving matrix whose column vectors
represent the regular spacing between the pat-
terns.

We can summarize the pattern construction with
one formula. For a given repetition index r,0 ≤

2



Horizontal filter

(1920, 1080,∞)

(720, 1080,∞)

(240, 1080,∞)

Hfilter

(13) (3)

F =

(
1
0
0

)
o =

(
0
0
0

)
P =

(
8 0 0
0 1 0
0 0 1

)
F =

(
1
0
0

)
o =

(
0
0
0

)
P =

(
3 0 0
0 1 0
0 0 1

)
Vertical filter

(720, 1080,∞) (720, 480,∞)

(720, 120,∞)

Vfilter

(14) (4)

F =

(
0
1
0

)
o =

(
0
0
0

)
P =

(
1 0 0
0 9 0
0 0 1

)
F =

(
0
1
0

)
o =

(
0
0
0

)
P =

(
1 0 0
0 4 0
0 0 1

)
Each of the filter has a repetitive functionality, described with the tilers. For example, the horizontal filter’s elementary
component takes a window of 13 elements that slides with 8 elements on each line of each image frame and produces 3
elements.

Figure 1. Example: downscaler from high definition TV to standard definition TV

r < srep and a given index i,0 ≤ i < spattern in the
pattern, the corresponding element in the array has
the coordinates

o + (P F ) ·
(
r
i

)
mod sarray, (1)

where sarray is the shape of the array, spattern is the
shape of the pattern, srep is the shape of the repeti-
tion space. The link between the inputs and outputs
is made by the repetition index, r. The representa-
tion of a Downscaler application from high defini-
tion TV to standard definition TV is presented in
Figure 1.

A complete definition of a semantics for Array-
OL language can be found in [2], together with a set
of construction rules and the way to statically verify
them that ensures that a specification admits a static
schedule. An application is statically schedulable
if the dependence relation between the calls to the
elementary tasks is a strict partial order. One of
the rules stipulates that no cycle in the graph of a
compound task is allowed. This restriction forbids
the construction of stateful structures. In order to
overcome this language restriction, an extension
of the Array-OL language was introduced in [7],
which allows cycles on a repeated task represented
as an uniform dependence, called inter-repetition
dependence.

3 Modeling uniform dependences

Formally an inter-repetition dependence con-
nects an output port of a repeated component with
one of its input ports. The dependence connector
is tagged with a dependence vector d that defines
the dependence distance between the dependent
repetitions. This dependence is uniform, which
means identical for all the repetitions. When the
source of a dependence is outside the repetition
space, a default value is used. When saying that a
repetition r depends on another rdep it means that
at the execution time repetition r will receive as
input values produced by rdep on its output port.
In Figure 2, the dependence vector (1, 1) specifies
diagonal dependences like shown in Figure 3.

Definition (inter-repetition dependence). The
formal specification of a complete inter-repetition
dependence consists of:

• a repeated component c within a srep repetition
space,

• an inter-repetition dependence dep with the
dependence vector d; dep connects an output
port pout to an input port pin (pout and pin have
the same shape s and both belong to c),

• a set of n default connectors defi (0 ≤ i < n)
connecting pin to an output port pi (0 ≤ i < n)
of other components,

3



(240, 1080) (240, 480)

0
(4)

(240, 120)

(14) (4)

(4)

F =

(
0
1

)
o =

(
0
0

)
P =

(
1 0
0 9

)
F =

(
0
1

)
o =

(
0
0

)
P =

(
1 0
0 4

)

d =
(
1, 1

)

Figure 2. Dependence example

0 . . . 239
0

. . . 119

def

Figure 3. Diagonal dependence

• each default connector defi has an associ-
ated tiler Ti, except the last one that may be
lacking a tiler (in which case pn-1 must have
the same shape as pin); t represents the num-
ber of default connectors tagged with a tiler
(n− 1 ≤ t ≤ n)

When computing the dependences, we have:

∀ r,0 ≤ r < srep, rdep = r− d (2)

and if the dependent repetition is inside the repe-
tition space (0 ≤ rdep < srep) then the repetition
r depends on rdep (the values produced by repeti-
tion rdep on port pout are consumed by repetition r
on port pin); otherwise repetition r takes its inputs
from one of the default connectors.

Validity property. The specification of the tilers
of the default connectors must be done in such a
way that for all the repetitions that need inputs from

the default connectors, at most one of the computed
references refi (0 ≤ i < t) is inside the shape of its
corresponding port pi. The reference element will
be computed in the same way as for a normal tiler
but without the use of modulo:

∀ i, 0 ≤ i < t, refi = oi + Pi · r, (3)

where oi and Pi are the origin and the paving of the
tiler Ti. This valid reference refv thus verifies that
0 ≤ refv < sv , where sv is the shape of the port pv .
This reference together with the corresponding tiler
Tv will be used to compute the tile to be passed to
the input port pin of the repetition r as the set of
indices ei verifying

∀ i,0 ≤ i < s, ei = refv + Fv · i mod sv (4)

where s is the shape of pin and sv is the shape of
pv. The exclusion between the tilers can be easily
verified with the help of polyhedral algebra.

4 Array-OL transformations

As mentioned, an Array-OL specification that
respects the construction rules is statically schedu-
lable. Any schedule that respects the strict partial
order between the calls to the elementary tasks of
an application will compute the same result with-
out any deadlock. Is a design intension that, by
expressing the minimal order of execution, lots of
decisions can and have to be taken when mapping
an Array-OL specification onto an execution plat-
form: how to map the various repetition dimensions
to time and space, how to place the arrays in mem-
ory, how to schedule parallel tasks on the same
processing element, how to schedule the communi-
cations between the processing elements? Mapping
compounds is not specially difficult. The problem
comes when mapping repetitions. This problem is
discussed in details in [1] where the authors study
the projection of Array-OL onto Kahn process net-
works. A representative illustration of the problem
is the presence of any intermediary array that con-
tains an infinite dimension, which would cause the
execution to be stalled in that point. The key point
is that some repetitions can be transformed to flows.
In that case, the execution of the repetitions is se-
quentialized (or pipelined) and the patterns are read
and written as a flow of tokens (each token carry-
ing a pattern). This can be achieved by refactoring
the application using the Array-OL transformations.
Using the hierarchy, we intend to isolate the infi-
nite dimensions at the top hierarchical level of the
application (which will represent the data-flow).

4



The Array-OL code transformations can be used
to adapt the application to the execution, allowing
to choose the granularity of the flows and a simple
expression of the mapping by tagging each repeti-
tion by its execution mode: data-parallel or sequen-
tial. A great care has been taken with these trans-
formations to ensure that they do not modify the
precise element to element dependences [4, 12], by
using a formalism based on linear algebra designed
specially for Array-OL1. A comparative study be-
tween these transformations and the loop transfor-
mations in the context of program optimizations
can be found in [6]. Although the similarities be-
tween the two types of transformations are obvious,
the two are situated at completely different levels
and their role is different. The loop transforma-
tions are at the level of execution and are used
mainly in compiler optimizations, while the Array-
OL transformations are situated at a high-level of
specification and their role is to adapt the Array-OL
specification to the execution model and platform.
By refactoring the application we can eliminate
deadlocks, reduce intermediary arrays or change
the granularity of the application and also facilitate
architecture exploration. Nontheless, the use of the
two types of transformations is not exclusive, after
using the Array-OL transformations at the specifi-
cation level, the loop transformations can be used
when compiling the generated code.

5 Dependences after transformation

Regardless of their role, all the Array-OL trans-
formations have similar impact on an application,
when talking about repetitions and hierarchy. Gen-
eralizing, they act on redistributing repetitions
through the hierarchy levels, with the creation or
suppression of hierarchy levels if needed. Further-
more, a transformation involves a maximum of two
successive hierarchy levels.

Taking each transformation one by one, we have:

• Fusion takes one level of hierarchy, creates a
superior hierarchy level for the computed com-
mon repetition, while what is left of the initial
repetitions is placed on the inferior hierarchy
level.

• Change paving (either by dimension creation
or by linear growth) has no impact on the hi-
erarchy levels, it just moves repetitions from

1ODT (Opérateurs de Description de Tableau in French) –
Array Description Operators in English .

the superior level to the inferior level of the
hierarchy.

• Tiling splits a repetition into blocks, by creat-
ing a hierarchy level.

• Collapse, by being the opposite of fusion and
tiling, suppresses the superior hierarchy level,
its repetitions being added to each of the infe-
rior level repetitions.

The Array-OL transformations guarantee that
the semantics of the application are not modified.
This implies that the repetitions stay the same after
the transformation, they are just rearranged through
the hierarchy and this forces a rearrangement of the
eventual inter-repetition dependences.

The issue can be formulated as follows: Having
the structure before and after the transformation
(represented both times by a one or two-level hierar-
chy of repetitions) together with an inter-repetition
dependence before the transformation, the inter-
repetition dependence(s) that express the same ex-
act dependences on the new transformed repetitions
have to be computed.

To do so, a connection between the initial and
final repetitions in a transformation must be identi-
fied by manipulating the formalism behind Array-
OL and some constrains that ensure that the se-
mantics of the application do not change. As said,
a transformation makes changes just through the
repetitions involved in the transformations. The
interface with the rest of the application must re-
main the same; the arrays that comunicate to the
rest of the application and the way they are con-
sumed/produced must remain unchanged. Through
these arrays, connections between repetitions be-
fore and after a transformation can be identified.

We start by expressing the connections between
the repetitions and the arrays for the two scenarios:
one or two hierarchy levels of repetitions.

One level. The connection between the repetition
srep and the array sarray in Figure 4 is done through
the tiler T . Using the rule for pattern construction
(1), we have:

∀ r,0 ≤ r < srep, refr = o+P ·r mod sarray (5)

Two levels. The connection between the two rep-
etition spaces srepsup

and srepinf
and the array sarray

(Figure 5) is done through the two tilers Tsup and

5



One-level repetition

(sarray)

(srep)

(spattern)

T = {o, P, F}

Figure 4. A one-level hierarchy

Two-level repetition

(sarraysup )

(srepinf )

(spatterninf )

(srepsup )

(spatternsup )

(sarrayinf )

Tinf = {oinf, Pinf, Finf}

Tsup = {osup, Psup, Fsup}

Figure 5. A two-level hierarchy

Tinf, and a common array (spatternsup
= sarrayinf

).

∀ rsup,0 ≤ rsup < srepsup
,

refrsup = osup + Psup · rsup mod sarraysup

(6)

∀ rinf,0 ≤ rinf < srepinf
,

refrinf = oinf + Pinf · rinf mod sarrayinf

(7)

Having the two tilers connected through a common
array and using an Array-OL construction named
“short-circuit”2 that allows expressing direct rela-
tions between array elements through several con-
nected tilers and considering the two repetitions
like a single repetition, the relation becomes:

∀
(
rsup
rinf

)
,0 ≤

(
rsup
rinf

)
<

[
srepsup

srepinf

]
,

refrsuprinf = osup + Fsup · oinf + (Psup Fsup·

Pinf) ·
(
rsup
rinf

)
mod sarraysup

(8)

In both cases the relation can be writen under the
form of equation 5.

Uniform dependences between repetitions.
Taking equation 5 with an uniform dependence d,

2Philippe Dumont‘s PhD [4], page 61

according to the definition of an inter-repetition
dependence (equation 2):

∀ r,0 ≤ r < srep, rdep = r− d

refrdep = o + P · rdep mod sarray

⇒refr − refrdep = P · (r− rdep)
⇒drefr = refr − refrdep = P · d

(9)

Accordingly to equation 9, an uniform dependence
between repetitions is equivalent to an uniform de-
pendence between the references of these repeti-
tions inside an array (drefr ).

Analysis. We have shown that in both cases (one
or two levels of hierarchy) we can express the re-
lation between the repetitions and an array with a
relation as shown in equation 5. Also equation 9
proves that an uniform dependence between repe-
titions is equivalent to a dependence between the
references of these repetitions inside an array.

Furthermore, the constraint that says that the
semantics of an application must remain the same
after applying a transformation implies that the ar-
rays at the border of the transformation’s action
must be produced in the same way, so all the ref-
erences inside the array before the transformation
must be present after the transformation. An even-
tual uniform dependence between the references
inside an array must also remain unchanged. This
is the link that we were looking for to connect the
dependences between the repetitions before and
after the transformation.

Now, having an initial structure expressed by
the relation to an exterior array and an initial de-
pendence between the references introduced by the
dependence between the repetitions:

∀ rbefore,0 ≤ rbefore < srepbefore
, refrbefore =

obefore + Pbefore · rbefore mod sarray
(10)

dref before = Pbefore · dbefore (11)

and a final structure expressed by a similar relation:

∀ rafter,0 ≤ rafter < srepafter
, refrafter =

oafter + Pafter · rafter mod sarray
(12)

dref after = Pafter · dafter (13)

, by constraining the dependence between the refer-
ences to remain the same, we have:

Pbefore · dbefore = Pafter · dafter (14)

6



Solving equation 14 is enought to find the depen-
dence(s) on the new repetitions. If there is no solu-
tion it means that there is no uniform dependence
that can express on the new repetitions the same ex-
act dependence as before the transformation, there-
fore the semantics of the application cannot be kept
unchanged and therefore the transformation is not
correct. If there is more than one solution for the
equation, each solution corresponds to a depen-
dence on the new repetition space.

If after the transformation we have just one level
of hierarchy, each solution will be translated into a
dependence on the repetition space. If we have two
levels of hierarchy, each solution will be used to
compute the dependences on the repetition spaces
of each hierarchy level 3:

dafter =
(
dsup

dinf

)
(15)

If the dependence on the superior level dsup is
null, for this solution we have no dependence on
the superior level, and the dependence on the infe-
rior level will be represented by the corresponding
dinf. If dsup is not null, we have dependences be-
tween elements on different blocks, represented by
a dependence on the superior level.

The Array-OL semantics for inter-repetition de-
pendences forces the passing of all the blocks con-
taining depending elements to the inferior hierarchy
level. The exact element-to-element dependence
on the inferior level will be represented by a default
link tagged with a tiler. The tiler will be repre-
sented by the exact corresponding output tiler of
the inferior level, with a shifted origin.

Computing the shifted origin. The element-to-
element dependence for repetitions in different
blocks will be expressed as sum of the two depen-
dences from the two levels of hierarchy. Having the
depending repetitions in different blocks we don’t
need to express the inferior dependence with the
use of the inter-repetition concept. Using a copy of
the output tiler with a shifted origin in enough:

∀ rinf,0 ≤ rinf < srepinf
, refrdef = odef + Pinf · rinf

(16)
The formula for computing the shifted origin

can be obtained by imposing the constrain that the
dependences remain the same as before the trans-
formation, even when repetitions are in different

blocks. For a repetition
(
rsup
rinf

)
that depends on a

3The separation between the two dependences is done ac-
cordingly to the size of the repetition spaces.

repetition outside its block, we have the reference
inside the original array:

refrsuprinf = osup + Fsup · oinf + (Psup Fsup

· Pinf) ·
(
rsup
rinf

)
mod sarraysup

(17)

and the depending repetition:

refrdep = osup + Fsup · odef + (Psup Fsup

· Pinf) ·
(
rsup − dsup

rinf

)
mod sarraysup

(18)

thus giving the distance between the two:

drefr = refrsuprinf − refrdep = Fsup · (oinf

− odef) + (Psup Fsup · Pinf) ·
(
dsup
0

)
(19)

Using the equation 13 in the case of a two-level
hierarchy we get:

dref after = (Psup Fsup · Pinf) ·
(
dsup
dinf

)
(20)

and therefore

drefr = dref after

⇒(Psup Fsup · Pinf) ·
(
dsup
dinf

)
= Fsup · (oinf

− odef) + (Psup Fsup · Pinf) ·
(
dsup
0

)
⇒Psup · dsup + Fsup · Pinf · dinf

= Fsup · (oinf − odef) + Psup · dsup

⇒Pinf · dinf = oinf − odef

(21)

As result, the shift of the origin will be computed
using dinf:

odef = oinf − Pinf · dinf (22)

where odef represents the origin of the tiler of the de-
fault link, oinf and Pinf the origin vector and paving
matrix of the corresponding output tiler of the infe-
rior level of hierarchy.

6 Conclusion

We aimed in this paper to analyze the interaction
between the high-level transformations designed
around Array-OL model of specification and the
inter-repetition dependence extension. The exten-
sion was introduced in order to allow the construc-
tion of self-loops in the task-graph, the only way

7



to define dependence relations between elements
of a same array and to keep state information. The
Array-OL specification model together with this ex-
tension is able to express multidimensional signal
processing applications with the common patterns
of this application domain: sliding windows, over-
and sub-sampling, cyclic array dimensions, states
and hierarchy.

As a transformation has an impact on maximum
two successive hierarchy levels of repetitions, we
have shown how, having the structure of the appli-
cation before and after the transformation, we can
compute the new dependences that will express the
same element-to-element dependences as before
the transformation. This guarantees that the seman-
tics of an application remain unchanged. Based on
this specification, an algorithm for adapting depen-
dences was proposed and proved. The algorithm
works independently from the Array-OL transfor-
mations, which facilitated the implementation.

The concepts of Array-OL are at the core of our
model-driven engineering framework Gaspard2 [3]
designed to codesign intensive signal processing
applications on system-on-chip. The specification
language of Gaspard2 can be seen as a subset of
MARTE, efforts being made to make the two fully
compatible [11].

The Array-OL transformations (without inter-
repetition dependences) were already formalized
and implemented in our tools. Following this study
and in order to validate the results, an extension of
the transformation tool was implemented, in order
to take into account inter-repetition dependences.
The results confirmed the validity of our algorithm
and they were integrated in Gaspard2.

References

[1] A. Amar, P. Boulet, and P. Dumont. Projec-
tion of the Array-OL specification language
onto the Kahn process network computation
model. In International Symposium on Paral-
lel Architectures, Algorithms, and Networks,
Las Vegas, Nevada, USA, Dec. 2005.

[2] P. Boulet. Formal semantics of Array-OL, a
domain specific language for intensive mul-
tidimensional signal processing. Research
Report RR-6467, INRIA, Mar. 2008.

[3] DaRT Team. Graphical Array Specifica-
tion for Parallel and Distributed Computing
(GASPARD2). http://www.gaspard2.
org/, 2009.

[4] P. Dumont. Spécification Multidimensionnelle
pour le traitement du signal systématique.
Thèse de doctorat (PhD Thesis), Laboratoire
d’informatique fondamentale de Lille, Univer-
sité des sciences et technologies de Lille, Dec.
2005.

[5] P. Dumont and P. Boulet. Another multidi-
mensional synchronous dataflow: Simulating
Array-OL in ptolemy II. Research Report
RR-5516, INRIA, Mar. 2005.

[6] C. Glitia and P. Boulet. High level loop trans-
formations for multidimensional signal pro-
cessing embedded applications. In SAMOS
2008 Workshop, Samos, Greece, July 2008.

[7] C. Glitia, P. Dumont, and P. Boulet. Array-OL
with delays, a domain specific specification
language for multidimensional intensive sig-
nal processing. Multidimensional Systems and
Signal Processing, 2009.

[8] J. Keinert, C. Haubelt, and J. Teich. Modeling
and analysis of windowed synchronous algo-
rithms. In International Conference on Acous-
tics, Speech and Signal Processing (ICASSP),
pages III–892– III–895, 2006.

[9] E. A. Lee and D. G. Messerschmitt. Static
scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE
Trans. on Computers, Jan. 1987.

[10] P. K. Murthy and E. A. Lee. Multidimensional
synchronous dataflow. IEEE Transactions
on Signal Processing, 50(8):2064–2079, Aug.
2002.

[11] E. Piel, R. B. Attitalah, P. Marquet, S. Mef-
tali, S. Niar, A. Etien, J.-L. Dekeyser, and
P. Boulet. Gaspard2: from MARTE to Sys-
temC simulation. In Modeling and Analyzis
of Real-Time and Embedded Systems with
the MARTE UML profile DATE’08 Workshop,
Mar. 2008.

[12] J. Soula. Principe de Compilation d’un
Langage de Traitement de Signal. Thèse
de doctorat (PhD Thesis), Laboratoire
d’informatique fondamentale de Lille, Uni-
versité des sciences et technologies de Lille,
Dec. 2001. (In French).

8

http://www.gaspard2.org/
http://www.gaspard2.org/

